
Transport and Communications, 2020; Vol. II. DOI: 10.26552/tac.C.2020.2.2
ISSN: 1339-5130 13

The Use of Matlab in Creating M/M/n/∞ Queuing Theory
Model

Viliam Mojský1, Karol Achimský1

1Department of communications, Faculty of Operations and Economics of Transport and Communications, University of Žilina,
Univerzitná 1, 010 26 Žilina, Slovakia

Abstract In our research we dealt with the creation of an algorithm designed to simulate M / M / n queuing systems
with endless queues. The algorithm was created in Matlab. When creating the algorithm, we proceeded according to scien-
tific literature, according to which we transformed the formulas into the Matlab algorithm. This process also included the
optimization and creation of new outputs based on the analysis of the generated data. The research output is a Matlab algo-
rithm suitable for creating simulations of M / M / n / ∞ systems.

Keywords simulation methods, Matlab, queueing theory, M/M/n/∞

JEL C63

1. Introduction

Through modelling it is possible to create models that
simulate the behaviour of a real system. It is a powerful tool
that can simulate the likely behaviour of a real system.
Outputs from simulations can be used to support decision
making.

In the research we dealt with the creation of a simulation
model of queuing system in Matlab. In our research we
have chosen Markov type of queuing theory models
M/M/n/∞. Our aim is to create an algorithm that can be
used to obtain statistical data when simulating a real queu-
ing theory system.

2. Methods and materials

The aim of the research was to create a simulation model
of M/M/n/∞ queue. The created model will simulate the
behaviour of the real queuing system at the post office,
which will provide relevant outputs based on which it will
be possible to evaluate the system [1,2].

The algorithm will be created in Matlab, in the LiveScript
environment. It will give us access to code, outputs, and
stored variables on a single screen. This will allow us to
analyse the results better and faster and determine the way
forward. The code is divided into three parts - initialization,
calculation and output. This will make the code clearer and
make it easier to identify possible errors and fix it [3,4].

When creating the model and obtaining statistical outputs
from the simulation, we followed the scripts System Model-
ling. They describe an algorithm for creating a simulation

model with N lines and an infinite queue, along with algo-
rithms and formulas for obtaining statistical data [5,6]

2.1. Statistics collected

2.1.1. The average number of customers in queue

where:
PPC – The average number of customers in queue
PCi – The number of customers in queue i
Ti – The duration of i-th time interval, expressed as:

Based on the above expression of Ti, the expression is in
scripts modified as follows:

where:
Fi – The size of queue i
T – Status start time
T0 – Status end time
Tk – Simulation end time

2.1.1. Average server load

14 Viliam Mojský (et al.): The Use Matlab in Creating M/M/n/∞ Queuing System Algorithm

where:
PVL – Average server load
VLi – Line i utilization

Based on the above expression of Ti, the expression is in

scripts modified as follows:

where:
Li – Line i status

2.1.1. The average number of customers in the system

where:
PPZ – The average number of customers in the system
PZ – The current number of customers in system

Based on the above expression of Ti, the expression is in

scripts modified as follows:

2.1.1. Average waiting time

where:
PPC – Average waiting time
CCi – Customer wait time in line i
NC – Number of waiting customers in line i
The relationship to PCC calculation implies that CC is

the sum of the waiting times of all customers in line i. The
waiting time of the customer is calculated by capturing the
time of his arrival, the line of the queue to which he joined
and the position in the queue. Subsequently, after finishing
the customer service, the line is queued forward. Once
again, we record type of event and the time it occurred. We
repeat this until the customer is queued to the server, at
which point we stop the waiting time measurement in the
queue [5,6].

This sequence is incorporated into the algorithm as fol-
lows:

Event: Arriving in the queue
 Recording of the line the customer has accessed, position

in the queue and time to variable VFj [Fj]. This variable
represents the size of the queue j, where the customer's ar-
rival time is stored. The [Fj] index indicates the custom-
er's position in the queue.

Event: Finishing of customer service
 The difference between the current time in system T and

the time spent by the first customer in the queue j VFj [1]
is added to CCj. This will return the time he has spent in
the queue since his arrival. At the same time, the number
of customers served in line j is recorded in the variable
NCj.
Event: Start of serving next customer

 After finishing the customer service, the server is ready to
serve another customer from the queue. This means that
the first customer from the queue will move to the server,
so the waiting time was recorded in the previous step. The
entire queue will move 1 customer forward.
Event: Simulation end

 After completion of the simulation, the CCj variable
stores the total time all customers spent in the queue.
Therefore, it is necessary to divide each variable CCj by
the variable NCj in order to obtain the average queue time
per customer from that line.
Within the algorithm, we used the same variable names

as those used in the formulas.

3. Solution

Within the solution we created a simulation model queu-
ing theory in Matlab. When creating the model, we decided
to use data from the real system to evaluate the simulation.
The data were drawn from diploma thesis: Utilization of
queuing theory at a selected post office by Ing. Silvia
Ďutková. Compared to the original data, we made a change
at the variable Tk, which we calculated in minutes per
month.

While writing the code, we first created the code exactly
according to the algorithms of the System Modelling scripts.
According to these algorithms, we created a flow chart of
the first algorithm design. Subsequently, we modified and
optimized this code for Matlab. Along with the optimization,
we thought of other possibilities of using the obtained vari-
ables, which expanded the number of obtained outputs. As
we wrote the code, we also found that the statistical data
formulas are inaccurate and produce slightly inaccurate and
distorted results. We found this error while writing the code.
Subsequently, based on the analysis of the outputs and their
comparison with the data measured in the real system, we
proposed adjustments to the algorithms, which we included
among the results of the research.

The development of the algorithm was as follows:
1. Creation of the first version of the code.
2. Code optimization.
3. Add new outputs.
4. Modifying formulas and subsequent code optimiza-

tion.
5. Creation of the final version of the algorithm.

Transport and Communications, 2020; Vol. II. DOI: 10.26552/tac.C.2020.2.2
ISSN: 1339-5130 15

3.1. Algorithm inputs

The inputs listed in Table 1 were used during the algo-
rithm creation.

Table 1. Algorithm inputs

Time interval 08.00 – 09.00

Hours 1

Workdays 25

Tk (min) 1500

N 6

mi0 (min) 0,84

mi1 (min) 3,23

Tk is the duration of the simulation in minutes. The sim-
ulation starts in 0 and takes Tk minutes, so 1500 minutes. N
is the number of service lines, there are 6 in the simulation.
The customer enters the system approximately every 0.84
minutes and the approximate length of customer service on
the line is 3.23 minutes.

3.2. First algorithm version

We divided the algorithm into three logical parts: Initial-
ization part, Simulation part and Output part. We have de-
cided for three parts because they logically divide the pro-
gram into inputs, operations and outputs. We have de-
scribed these parts in their own chapters. While writing the
first version, we followed algorithms and schematics from
System Modelling scripts, where they were stated in Pascal
programming language.

3.2.1. Initialization part

The initialization section defines the variables that are
used in the algorithm. Variables are assigned their initial
states, which can change during the operation of the algo-
rithm.

There are three commands at the beginning of the algo-
rithm: clear, tic, and rng. The clear command is used to
clean up the Workspace, that is, to delete all saved variables
from programs that were previously run and did not “dump”
the variables. This ensures that the results of previous exe-
cutions of the algorithm will not affect its current perfor-
mance and will not distort the results and cause errors and
bugs. Next follows the tic command, it is a paired tic-toc
command. The command is used to measure the execution
time of the code between the two commands. The tic code
is given at the beginning of the code, toc at the end of it, to
monitor the execution rate of the code and to monitor the
impact of optimization measures. The rng () command is
used to determine the random seed by which the program
will generate pseudo-random numbers. We used it to see if
editing the code affected the results, which would be unde-
sirable in case of optimization.

At the start of initialization, the code is divided into var-
iables declared by the user and automatically populated
variables.

In the section with variables declared by the user, there
are 4 variable declarations that are set by the user according

to the characteristics of the system he wants to simulate.
The variables have the same names as their equivalents in
the queuing theory and have already been described in the
previous chapter. These are the variables N, Tk, mi0 and
mi1. We used data from Table 1 to populate them. These
are the only variables that the user sets. Changing other
variables will most likely affect the simulation results and
will yield irrelevant outputs. In addition to these 4 variables,
the user can change the value in the rng () function to a
constant number to achieve the same results with each itera-
tion, or set the command to rng (‘shuffle‘) to obtain a dif-
ferent random seed and a series of pseudo-random numbers.

Next, there is a section with automatically populated var-
iables that contains variables that the user should not modi-
fy. Their population is automated within the algorithm. At
the beginning there is a section with the preallocation of
variables. Here are preallocated some one-dimensional var-
iables. Also, the variable N is shifted here. The N = N + 1
command is used to shift the numbering in the simulation.
The problem is that the variable indexes depends on the
number of servers. We have eg. 4 servers: 1., 2., 3., 4., so
we will have mi1, mi2, mi3, mi4 and also the statistics will
be for each server separated. The problem is the arrival of
the customer, where is used variable mi with index 0 (mi [0])
and also the time variable TU uses index 0. Matlab is not
able to work with index 0, all fields must start with index 1.
Therefore we had to shift the customer arrival time to index
mi [1] and time of arrival of the customer to TU[1], so we
had to move all other indexes in the algorithm 1 higher.
This means that each line and queue are represented by an
index 1 greater than their actual number. Thus, line 1 has an
index 2, line 2 has an index 3, and so on. Next, there are 3
declarations of one-dimensional variables cpz, ppz and pz.
Cpz is a variable used to determine the total number of cus-
tomers that were in the system during the simulation. The
variables ppz and pz are the statistical variables described
before. All variables were pre-allocated with 0.

In the next section, are multi-dimensional variables filled
with initial values. Multi-dimensional variables are varia-
bles that are of the field type, and store data by indexes,
with indexes according to servers in the system. At the be-
ginning of the algorithm is a for loop that iterates from 2 to
N, filling the vector variables with zeros. These vector var-
iables include F [i] (line queue), L [i] (line state), and TU [i]
event time [i]. F is set to zero because at the beginning the
queue is empty. Also, the server is set to 0 because there are
no customers, so the server is not serving. When the server
starts serving a customer, the variable switches to state 1.
TU [i] is the time of event i (arrival of the customer [1], or
finishing customer service on line i [2 : N]. Initially, the TU
variables are set to Tk, that is, to time of simulation end, to
make sure that the first event that occurs in the system is the
arrival of the customer TU [1]. The variable mi with index
[2: N] stores the value mi [1] defined by the user. The vari-
ables ppc and pvl are named according to the formulas in
the methods chapter. The maxf [i] variable is used to record

16 Viliam Mojský (et al.): The Use Matlab in Creating M/M/n/∞ Queuing System Algorithm

the size of the maximum queue on server [i]. The maxft [i]
variable is used to record the time when the maximum
queue occurred on the line[i] for the first time. Next are
declarations of 4 initial variables to start the cycle. The mi0
value stores the user-defined mi0 value. The variable T in-
dicates the current time in the system and is initially set to 0.
Next, TU [1] = 1 is assigned to determine that the first cus-
tomer will enter the system within 1 minute of the start of
the simulation. Next is assignment of the value T0, which is
used in the formulas to obtain the statistical values.

The last command in this section performs the initial
population of the variables with statistics through the for
loop. Here, the ppc and pvl variables are first populated.

3.2.2. Simulation part

The simulation part of the algorithm performs the simu-
lation and ensures the collection of statistical data. It is also
divided into several parts.

The first part ensures detection and selection of the next
event. This is an event model, so selecting the nearest event
is crucial for the simulation to work properly. At the begin-
ning of the code is a while loop, which encloses the entire
algorithm and determines its completion. It has condition
T<= Tk, that is, it will run if the current time T in system is
less than or equal to the end time Tk. The cycle is followed
by a temporary determination of the next TUk event. TU [1]
is selected as the nearest event, and k is assigned a value of
1. This is followed by a cycle that iterates from 2 to N,
which compares TU [i] with TUk. This determines whether
other event occurs earlier than the TU [1] event. If the result
is true, the appropriate TU [i] is stored in the TUk and the
index value [i] is assigned to the index [k]. After the cycle,
the next event that occurs in the system and its server index
is detected. Subsequently, the value T is stored in the varia-
ble T0 and the value TUk is stored in T, which becomes the
new current system time. This way, the current time of sys-
tem T and the previous time in system T0 are determined.

Next, there is a decision branch that begins with an if
statement to determine if the next event is the arrival of the
customer or finishing of customer service. Customer arrives
only in case of TU [1] where k = 1, all other indexes mean
finishing of customer service on one of the lines. Therefore,
the cycle determines whether k = 1. If so, it is the custom-
er's arrival to the system. If not, it is the finishing of cus-
tomer service.

If a new customer arrives, it is expected to queue, so it is
initially looking for the smallest queue (the algorithm as-
sumes that each customer prefers to queue to the shortest
queue). Searching is similar to searching for the next event.
Initially, it is determined that the smallest queue F [j] is
queue F (2) (2 is the first-server index, because of the index
shift). The index of the shortest queue j = 2 is also deter-
mined. This is followed by a for cycle from 3 to N, which
compares queues on other lines with Fj. If any queue is
shorter, its value is stored in Fj and its index is stored in j.
In this way, the shortest queue index is determined. The

following are three formulas for ppz, pz, and ppc statistics,
which follow these formulas. On arrival, the number of
customers (pz) increases. With these three patterns, it is
important that they record events before the queue is in-
creased. They are located before the queue is raised and
lowered. Thus, they accurately record the time of occur-
rence and the time of event change. These are followed by
an increase in the F [j] queue by one customer who has just
arrived in the system. Next, after the que increases, we find
out whether the current queue is the largest one that oc-
curred on the line. The is a simple if statement. If the result
is true, the current queue size is stored in maxf and the cur-
rent time in the system is recorded in maxft. This is fol-
lowed by an increase in cpz statistics. The last command in
the branch generates the time when a new customer enters
the system and it is stored to TU [1].

In the if branch of finishing customer service, ppz, pz,
and pvl statistics are initially calculated. When the customer
leaves, the current number of customers (pz) decreases.
This is followed by a command that turns off server and
sets it to L (k) = 0 because the customer has been served
and left. The last command assigns Tk + 1 to TU (k), en-
suring that the variable is not selected as the nearest event
to occur.

Next, both if the branches are followed by a branch that
checks if there are customers in the queues and if they are,
it detects the status of the given server. This is done using
two if statements placed in the for loop. The for loop en-
sures that the detection is performed for all servers. The
first if determines whether there are customers in queue F[i].
If yes, then a second if follows, which detects whether the
line is busy [1] or free [0]. If it is free, it means that the first
customer from the queue can move to the server and the
queue decreases. Otherwise, everything remains as it was. If
the line is free, a series of commands follows. First, the ppc
statistic is recorded according to the formula. Next, the F [i]
queue will be shortened by one customer who has moved to
the server. Next, pvl statistics are recorded. This is followed
by a command that turns on the L [i]. The last command
generates the time how long it will take to serve the cus-
tomer who has just moved from queue to the server and
stores the result to TU [i].

This is the last step in the while loop. After all the com-
mands have been executed, the evaluation an performed to
determine whether the cycle will continue or end.

In the simulation part, there is a collection of statistics
after the while cycle. It runs through a for loop. This en-
sures that all recent events that occur in the system are rec-
orded in ppc and pvl statistics.

3.2.3. Outputs part

The last part of the algorithm serves to display the simu-
lation outputs in text form. Most statements are enclosed in
a for loop to run for each server statistics. The first output is
the average number of customers ppc. Before the value is
outputted, it is calculated according to formula to obtain its

Transport and Communications, 2020; Vol. II. DOI: 10.26552/tac.C.2020.2.2
ISSN: 1339-5130 17

final value. The output is executed by the disp () command,
which ensures that the inserted string is displayed in the
output window. The string to be inserted is previously de-
clared to the vetappc variable. In it we constructed a sen-
tence that outputs the line and its average queue per hour.
Other statements work on a similar principle. Next is listing
the maxf max queue along with the maxft time in which it
occurred. This is followed by a listing of the average and
total number of customers in the system. The last output is
the average line load in%.

3.2.4. Evaluation of outputs

We obtained several outputs from the simulation using
the algorithm. The results of the simulation showed statis-
tics of the system with current input characteristics. Analy-
sis of these results revealed several inconsistencies. There is
a big difference between maximum and average queues on
lines. This can be explained by, that most of the time, the
queues were empty, and sometimes the system was over-
whelmed by customers and the queues reached the maxi-
mum values recorded in the output. This implies that cus-
tomers who entered the system went straight into the ser-
vice and did not wait in line. The average number of cus-
tomers in the system says that there was almost always a
customer on the server. This results from ppz statistic.
There were 6 servers, so if the average number of customers
in system was 6.5, then each server was likely to be regu-
larly occupied and there was approximately 1 customer in
the queue. The total number of customers in the system was
1804, which is a plausible quantity due to the simulation
time and does not contradict the statistics. There is a prob-
lem with average server load (pvl). Previous slight irregu-
larities could be justified, but the pvl indicator violates these
reasons. Percentage of server usage is in direct conflict with
the average number of customers in the system, which says
that on average, there has always been a customer in system.
According to the percentual utilization of the servers, the
busiest server was utilized at 13%, so approximately 87% of
the time it was free. Server 6 was even free for 98% of the
time of the simulation. The indicator is also very contradic-
tory when it comes to comparing statistics within it. The
first three lines have approximately the same% utilization.
This results in a very strange statistic When the customer
entered the system, before it was served, two other custom-
ers entered the system and they occupied lines 1, 2 and 3.
For a long time, nothing happened and the situation repeat-
ed again, three customers entered the system at once and
again occupied the first three lines. This is the most likely
explanation. If they enter independently, gradually and not
in triplets, they would in most cases go to the first line, be-
cause it was free in 87% of the time and waited for the cus-
tomer. Thus, the explanation for this statistic is that cus-
tomers most often entered the system in triplets. Less often
in quadruples, quintuplets and sixes, but these situations
must have also occurred because other lines have also been
used. For fun, the worst luck had the customer who entered

the system in 255.21 minutes, because then he had to queue
on line 6 for the 3rd position. And according to statistics,
line 6 was 98% of the time without a customer. These sta-
tistics are very unlikely. We do not claim that such situa-
tions could not have occurred, everything is possible with
random generation, but it is very unlikely. Especially the
part where the triplets had to go into the system at the same
time, so the third customer had to come before the service
of first customer was finished and when he left, there was a
long pause during which the system was empty and then
three customers entered the system again.

When the number of lines N = 6 was replaced by N = 2,
the server usage of server 1 increased to 14% and server 2
to 16%. The average number of customers on queue was
121 on queue 1 and 125 on queue 2. The average number of
customers in the system was 497.

These results seemed very unlikely, so we decided to ad-
dress them in the next chapter in optimization by vectoriza-
tion. This will allow us to create vectors from the variables
that can be plotted and thereby check how many customers
were on the servers and when they were active.

3.3. Algorithm optimization

To optimize the variables, we vectorized and preallocated
them, and used GPU parallelization to speed up the render-
ing of outputs.

Vectorization is the transformation of commands into
vectors. This is a procedure designed to get rid of unneces-
sary cycles in order to speed up program execution. Matlab
is a vector language and it is more natural and faster for it to
work with vectors than cycles. The second important
change was the transformation of fields into column vectors.
By default, the vector is created as a row, so it stores values
in one row. However, Matlab is able to work with columns
faster, so we transformed them. Another important change
was the preallocation of variables. Preallocationg means
pre-populating the memmory in which vector variables will
be stored. This preallocation of the memmory will signifi-
cantly speed up the program execution time. In the algo-
rithm, vectors are expanded by 1 field at each iteration to
obtain a complete list of variables. Matlab create vector
copies by creating a copy of an vector, adding a new value
to the vector, and then saving that copy as the original vec-
tor. This is a quick operation, but with many repetitions, it
will start to take a lot of time. In addition, over time, the
amount of data that needs to be copied increases. Prealloca-
tion will speed it up, because instead of creating a new vec-
tor on every iteration it will only create it once and then will
only rewrite the preallocated values with values from the
system.

We verified these statements with our own algorithm,
where we tested the speed of variable population. We tried
to populate a non-vectorized and vectorized, row and col-
umn variable without preallocation and with preallocation.
We have generated and stored 100,000 pseudo-random
numbers in these variables. The worst result was at

18 Viliam Mojský (et al.): The Use Matlab in Creating M/M/n/∞ Queuing System Algorithm

non-vectored and not preallocated , column variable with an
average time of 3.02 seconds. The fastest was a vectorized,
preallocated, column variable with a time of 0.0033 seconds.
Therefore, we decided to optimize the algorithm code using
the procedure mentioned above.

Within the simulation algorithm, we did not find a suita-
ble cycle that could be accelerated by parallelization with-
out compromising its reliability. However, we managed to
implement GPU parallelization in generating graphical
outputs. GPU parallelization allows the use of graphics
processor cores to speed up the execution of operations. The
condition is that the GPU must have CUDA cores that are
only in NVidia graphics cards. All changes made to the
algorithm are described in the following chapters.

3.3.1. Vectorization and preallocation

We chose vectorization to column vectors, and prealloca-
tion for several reasons. The first was to optimize the code
for Matlab and speed up code execution. The second was
the possibility of obtaining further outputs.

At the beginning, we transformed multidimensional var-
iables such as F [i], L [i] and mi [i]. The transformation was
done by adding a second index to the variable declaration.
In the first algorithm, the variables were populated by for
loop by assignment operations, such as the variable F [i] = 0.
The transformation was done by adding index 1 to the sec-
ond position, so the new declaration has the form: F [i, 1] =
0. The second step was to get rid of the for loop. Matlab can
work with vectors much faster than cycles. There are two
solutions for this operation. A function or direct vector dec-
laration. Function zeros fills the variable with zeros accord-
ing to the specified range, so F = zeros (2: N, 1) creates a
vector F with rows from 2 to N and with 1 column and fills
it with zeros. The second option is a direct declaration F (2:
N, 1) = 0, which does the same. Our experiments and the
experience of other users in the Matlab forum show that the
direct declaration is a little faster. The acceleration depends
on the size of the vector being created. In our case, there is
probably an improvement by one hundredth, or perhaps a
thousandth of a second, but it is still an improvement, so we
decided to declare variables directly. We transformed all
variables that ranged from 2 to N depending on the line in
the system as described. In this way, we eliminated several
for loops, created column variables, and all variables are
preallocated, which together greatly optimizes the algo-
rithm.

3.3.2. Transformation of formulas

Given the inaccuracies in the output of the previous algo-
rithm, we decided that we need a graphical representation of
the queue, servers, and number of customers in the system
to compare them with the calculated statistics. Therefore,
we decided to modify the formulas so that they do not work
with single values. Instead, these values are stored in varia-
bles. At the end of the algorithm, the outputs are calculated

according to formulas. An example of formula for average
number of customers from the algorithm:
ppc(j)=ppc(j)+F(j)*(T‐T0);
The formula gradually adds to itself the multiplication of

the size of the current queue and the difference between the
current and the previous time. Based on this process, we
transformed the formulas into the following form:
h(i)=h(i)+1;
FF{i,1}(h(i),1)=F(i);
TTF{i,1}(h(i),1)=T;
TT0F{i,1}(h(i),1)=T0;
ppc(i)=sum(FT{i,1}(:,1).*(TTF{i,1}(:,1)‐TT0
F{i,1}(:,1)));
ppc(i)=(ppc(i)/Tk);

We replaced the original variables with vectors. In order
to draw a custom graph of each variable for each line, we
had to create a separate vector for each line. We saved them
in a vector, so we created an array of vectors. To index in-
dividual values within a vector, we have created an variable
h [i] that varies for each server and indexes the values in the
vectors. For example, FT {i, 1} (h (i), 1) = F (i), where i = 3
and h [i] = 50. This means that an operation is in progress,
e.g. customer's arrival in line 2 (3-1). 50 values are already
recorded in the vector. The new value will have an index of
51 (50 + 1). Thus, the variable FF {3,1} (51,1) writes the
value F (3), ie the current queue size on queue 2. The FT
variable stores the size of the queue, the TTF variable stores
the time T for the FT variable, and the TT0F variable to
store the time T0 for the variable FT. There are also varia-
bles LT, TTL and TT0L in the algorithm, which have simi-
lar use, but for servers. The reason for separating TTF time
for queues from TTL time for lines is the difference in
when they are recorded. The time T for the queue is rec-
orded in the customer arrival branch, the T part for the
server in the finishing service branch. There could be a
mismatch and were therefore separated. The same proce-
dure was applied to the PZ variable, to which we added the
PZT variable to store the time T.

The preallocation of these variables was problematic. The
number of their elements cannot be predetermined precisely
because their number depends on randomly generated val-
ues and can range from 0 to several times the time Tk, de-
pending on the input characteristics of the system. Official-
ly, there is no way to precisely predict the size of a variable
with a variable of unknown number of elements. Therefore,
we have decided to apply approximated preallocation. In
this part of the algorithm, we estimate the size of the varia-
bles and based on this estimate, the size of the variables is
preallocated. In the algorithm we made these estimates
based on system observations. We have determined the ca-
pacity of Tk * 2 by the variables, which can be interpreted
so that customer arrives or is served every half minute. This
is unlikely, especially in a simulation of a real system, and
the system input parameters used do not suggest this. In any
case, the algorithm should be designed for other input pa-
rameters where the quantities could be higher than in our

Transport and Communications, 2020; Vol. II. DOI: 10.26552/tac.C.2020.2.2
ISSN: 1339-5130 19

case. Ideally, this would be determined by analysing the
relationship between the basic input characteristics N: mi0:
mi1: Tk. This analysis would probably require more time to
carry out, so we will carry it out as part of further research.

The approximate preallocation proceeds in 2 steps:
1. Field preallocation
2. Vector preallocation

First, there is a preallocated field in which the vector
values will be stored. The field is preallocated by the cell
function, in which its size is inserted. In the second part, the
vectors themselves are preallocated by the zeros command
to preallocate Tk * 2 positions with a value of 0.

But there is a problem. By approximating the size of an
element, it is likely that we will not preallocate the right
amount of memory. This could cause problems when cal-
culating statistics, where the formula would count with zero
values. This would not affect the result, n + 0 = n. A prob-
lem would arise when plotting graphs where even zero
points would be plotted. In addition, in terms of optimiza-
tion, zero points would take up memory space. Therefore,
after completing the simulation part and before the output
part, it is necessary to insert another part that will modify
the preallocated vectors and remove unnecessary zero ele-
ments from them. For this we used the property of the vari-
able TT, which records the time T. T is the current time and
at the end of the simulation it equals or is greater than the
maximum value and the simulation ends. So, we can as-
sume with certainty that if we find the maximum of TT, we
find its last non-zero value within the vector. Any subse-
quent value must be zero. Based on this assumption, we
created a for loop that iterates from 2 to N. The use of the
loop was necessary in this case because we could not find a
way to vectorize vector variables stored in cell fields. The
maximum value position within the vector is searched for in
the cycle. When found, all three vectors associated with it
are cut off based on its value. So, if we are looking for the
maximum for TTF {2,1} - i. the second vector in the TTF
field. The result is stored as a coordinate in the variable Yft
(i, 1) by the command [~, Yft (i, 1)]. The result is stored as
a coordinate in two variables specified by square brackets.
The maximum value is stored in the first place and its coor-
dinate in the second. The maximum value is not needed, so
its saving is denied using the ~ character and only its coor-
dinate is stored. Subsequently, this coordinate is used to
determine the point at which the vector is to be cut.

In this way, a sufficient amount of memory is preallocat-
ed for the variables. This may not seem efficient at first
glance, but it is, and the result is optimizing code speed,
even though we've added a few extra lines to the code. This
is because when Matlab expands a vector with a new varia-
ble - it must always copy the vector, paste the variable to
the copy, delete the old one, and replace it with the new one.
These are 4 operations that execute as many times as many
variables are written to the vector. On the other hand, the
preallocation takes place once, then the preallocated values
are only overwritten with new ones and, in the end, the ex-

cess space is cut off. So if it were generated 500 values, so
without preallocation, about 4 * 500 = 2000 operations
would take place, while with approximate preallocation
only 1 + 500 + 1 = 502 operations. The efficiency of this
method was verified in tests where we tested the speed of
the algorithm with and without pre-location. As a result, the
implementation of the preallocation algorithm was acceler-
ated by an average of 2.5 seconds, which we rate as an im-
provement.

In the ways outlined in this chapter, we have modified
and optimized all multidimensional variables

3.3.3. Command vectorization and other optimizations

In statement vectorization, we tried to replace cycles in
the algorithm. We have described the vectorization of cy-
cles from the initialization part in the previous section.
There were also several cycles that could be vectorized
within the computational part. Here we have optimized the
search for the closest event and the search for the smallest
queue. We replaced the for loops with the min function,
which looks for the minimum and stores its size and posi-
tion. We have done the same for the smallest queue, but we
only saved the index.

Other optimization activities include the use of
short-circuit operator. We used it when deciding whether
someone is in the queue and whether the line is serving.
Originally it was solved through two if statements. For ex-
ample, the short-circuit operator is && (logical and). In this
context, it is used to determine whether both terms are true.
The difference between using & and && is that && evalu-
ates the second expression only if the first is true. So, if the
first expression is false, the second does not even evaluate
and saves time. Using this command, we merged both if
statements into one with optimized evaluation.

3.3.4. GPU parallelization

Vector variables obtained by vectorization allow us to
create graphical outputs from the simulation. Creating
graphical outputs is hardware-intensive in the case of a
large number of plots. This process is parallel by default but
is limited by the number of CPU cores. Therefore, Matlab
makes it possible to speed up this process by using graph-
ical cores. CPUs usually have from 2 to 8 cores, the number
of threads can be doubled. GPUs have several hundreds or
thousands of cores depending on the type of card. However,
parallelization also copies and creates temporary variables,
which slows down the process. Therefore, it should always
be considered whether parallelization pays off. Usually,
small and unpretentious amounts of operations are not
worthwhile, while larger ones are.

In the outputs are plotted many coordinates on the graph
area, so we decided to use GPU parallelization. We have
added graphical outputs to the end of the algorithm. Initially,
it checks to see if a compatible graphics card is available on
your computer. This is done by attempting to create gpuAr-
ray, and if successful, true is returned. If this field cannot be

20 Viliam Mojský (et al.): The Use Matlab in Creating M/M/n/∞ Queuing System Algorithm

created, an exception occurs, and a catch branch returns
false. Based on the result of this attempt, values are as-
signed to variables in cycles. We made the assignment
through for loops because we could not find a way to vec-
torize cell fields. We made these assignments so only one
variable i sused in the graphical outputs.

3.4. New simulation outputs

Using new variables, it was possible to create new out-
puts in graphical form. The graphs were outputted through
for loops, in which we enclosed all the properties and pa-
rameters that should be plotted for the graph. First is the
figure function. It is used to separate the plotted graphs
from each other, because when plotting from the cycle, an
error occurs, in which only the last plotted graph is dis-
played, and the others are discarded. The graphs are dis-
played using the painters function, which is suitable for 2D
graphs. The position parameter is also set, in which the res-
olution of the graph is determined. This is followed by the
plot command, where the x and y axis parameters are in-
serted, and the hexadecimal colour is set to blue. This is
followed by a hold command with the off parameter, which
is used to determine whether the graphs will be drawn into
each other and overlap, or each graph will have its own
space. The off parameter specifies that each graph will be
separate. Next is the title statement, which creates the title
of the graph based on the inserted string. The number of the
server for which the graph is displayed is inserted in the
algorithm. The following are the xlabel and ylabel com-
mands, which create descriptions of the x and y axes based
on the entered text.

The graphical outputs are created for the queue size,
server state and number of customers in the system. The
queue size and server status are plotted separately for each
line, the number of customers in the system is total for the
system. From the obtained outputs, the queue size output on
server 1 in Figure 1 and the status of server 1 in Figure 2 are
displayed.

Figure 1. The queue size of queue 1 in time

Figure 2. Utilization of server 1

As it can be seen from Figures 1 and 2, the server 1 was
almost fully utilized. However, this differ with the statistics
obtained, which is strange because they are drawn from the
same data from which the statistics are calculated.

To check the results, we placed three more vectors in the
algorithm to record the values of the queue and lines at each
point in the system. For comparison, server 1 has been
plotted from approximately 900 intercepts in Figures 1 and
2. In the new algorithm, approximately 4500 points were
captured for Line 1, from which the graph was drawn. It is
likely that some of them are duplicates. Nevertheless, it is a
much more accurate graph. Given the simulation time,
which is 1500 minutes, it can be argued that for line 1 its
state was captured approximately every 1/3 minute, that is
every 20 seconds. There is no difference between the data
in the graphs, both showing the same values. We chose to
keep the new vectors values because it plotted the data more
accurately and without the oblique edges in the chart, from
which it is unclear what they mean. We have also changed
the function of plotting a plot from a plot to a stairs function,
which creates “staircase” graphs that are more legible and
without oblique edges. We also tested its use on data from
previous vectors to avoid unnecessarily creating new, larger
vectors, but there were inaccuracies in the graphs due to
fewer points captured over time. Therefore, we decided to
use the new vectors for plotting graphs.

3.5. Algorithm modification based on output analysis

Based on the outputs, we have determined that the for-
mulas used to calculate the statistics are incorrect. By ana-
lysing the original formulas, we concluded that the formulas
used in the algorithms were incorrectly derived from the
original formulas. The problem was at time T0, which
symbolizes the previous time in the system. The original
formula assumes Tj-T (j-1). T (j-1) has been expressed as
T0 and we think that there is a mistake. In the original for-
mula, time T was a two-dimensional vector with times Tj
and T (j-1) separately for each link. The reason for it is the
connection to the TU time, which is separated for each
server. Each server has its own service duration. Initially, T
is stored in T0 and TU is stored in T. Thus, T0 is the time of
the previous event and T is the time of the next closest
event. However, these events may not be performed by the
same server. The formula clearly works with one queue,
that is, the utilization of just one server. Therefore, in our

Transport and Communications, 2020; Vol. II. DOI: 10.26552/tac.C.2020.2.2
ISSN: 1339-5130 21

opinion, it is also necessary to work with the time for the
line and not with the general system time. For example, let's
say that a finishing customer service event is on server 5 at
time T = 20. The event executes and finishes, and the next
event selection begins again. The algorithm evaluates the
finishing customer service event on server 1 at T = 21 as
closest, so it stores the value 20 in T0 and the value 21 in
T0. In the formula: ppc (j) = ppc (j) + F (j) * (T- T0), the
queue size of server 1 is used, the time T that corresponds
to the server 1, but it uses the time T0 that corresponds to
the server 5. This greatly shortens the real service time that
was different from the time used in the formula. Therefore,
we propose to use indexed times T and T0 to record for
each line separately and to avoid mixing times between
lines.

In the algorithm we solved it directly without having to
record the time T0. Matlab has the diff function, which is
designed to subtract vector elements in a [i] -a [i-1] way, so
we only recorded the time T [i]. So, the difference time T [i]
-T [i-1] was calculated using the diff function. We added 0
to the resulting field, because this is the first value of the
unmodified vector T and throws it off in the calculation
because it is the first value bound to T [i-1] and there is
nothing to subtract from it. Therefore, it is added to the be-
ginning of the vector. The new formula in the code:
ppc(i)=(sum(FT{i,1}(:,1).*([0 ;diff(TTF{i,

1}(:,1))]))/sum(([0 ;diff(TTF{i,1}(:,1))]))
);

Despite the difficult looking code, this is the same for-
mula as in the methodology, only with the correction of the
time T.

After this adjustment, the graphs matched the text output,
but we noticed another drawback. If we set the number of
lines to 16, then lines 10 - 15 have 0% utilization and the
first lines create a queue with a waiting time of 0.5 to 2
minutes. It does not make sense. In a real system, if the
customer enters a system, he would go to the line where he
would be immediately served. We focused on the part
where the queue is selected by the customer. The logic of
the algorithm is that the customer selects the smallest queue
when he arrives at the system. That is correct but let us con-
sider the following situation. Lines 1, 2 and 3 are serving
a customer and line 4 is empty. Customers are in queue on
lines 1 and 2. There are no customers on lines 3 and 4. If we
choose only the nearest minimum queue, the first option is
line 3, because its queue is empty. But the algorithm does
not take into account that there is a customer on the server
and so the customer who entered the queue must wait.
While line 4 is completely empty and unused. This is non-
sense in terms of a real system. If I have to choose a cash
register in the store, I will choose the one that is empty.
Therefore, we propose to modify the algorithm so that when
selecting a queue, it takes into account not only the queue,
but also the state of the line. The server has 2 states. State 0
if empty and 1 if serving. This can be used to determine the
total number of customers on the server. Therefore, we cal-

culate the minimum of the sum of the queue and server oc-
cupancy to get the total number of customers on the line. In
the previous example, the customer will be moved to line 4
because it is empty and will go straight from the queue to
the operator without the need for waiting. Now that we have
adjusted the algorithm to the number of lines 16, the simu-
lation showed that there was no queue anywhere and the
waiting time on the line was 0, so there was an immediate
service. We consider this adjustment to be a key one from
the point of simulation feasibility, because it brings simu-
lated customers' behaviour closer to reality.

3.6. Final algorithm version

All previous chapters led to the final version of the algo-
rithm, which is the result of the research. To compare the
versions of the algorithms, we measured the speed and
memory that the algorithms occupied with the same input
parameters set out in Table 1. The measurement results are
shown in Table 2.

Table 2. Algorithm version comparison

First
run
(s)

Subsenquential
runs (s)

Memory
requirement
(byte)

Used
memory to
process
speed ratio
(MB/s)

First
version

0,48 0,30 982 3,2

Final
version
without
graphs

0,84 0,7 786 578 1097,35

Final
version
with
graphs

3,11 1,23 1 451 497 1152,42

The values were measured on a computer with 4 core
i5-7500 processor, 16GB DDR4 2400 MHz RAM in dual
channel, NVidia GTX 1050 Ti graphics card and M2 SSD
with 900 MB / s write, 1500 MB / s read speed.

Despite an approximately 800-fold increase in memory
requirements, there was only an approximately 2-fold in-
crease in the time required to execute the algorithm on the
first and final version without graphs. In graph ploting, the
first run time is considerably longer, and the space require-
ment has also increased. The used memory to process speed
ratio is how fast the data in the algorithm was processed in
MB / s (larger is better). Here can be seen the effect of code
optimization on execution speed. It could be interesting to
have the final version in the unoptimized version with the
same amount of data or running the algorithm on a more
powerful computer.

Two statistics were added to the final version of the algo-
rithm, the average queuing time (pcc) and the total number
of customers served (NC). Both statistics are output only in
text form. Together with other outputs, they provide com-
prehensive information about the behaviour of the created
system model. The algorithm produces both text and graph
outputs. These are created on the basis of collected statistics.
The simulation model collects two types of statistics, statis-

22 Viliam Mojský (et al.): The Use Matlab in Creating M/M/n/∞ Queuing System Algorithm

tics integrated over time and statistics not integrated over
time. For statistics integrated over time, the time they oc-
curred is stored. Based on it, it is possible to create graph
outputs that show the time sequence of events of a given
variable. Non-time-integrated statistics record the average
or total values of selected variables. They are mostly used
to create text outputs.

Compared to the original version of the algorithm, we
consider the modified, final version as a step forward. It
provides multiple outputs, allows to view the development
of statistics over time, and all the variables obtained are still
available at the end of the program and can be processed
into other outputs. Due to the highier amount of data to be
recorded, the new version requires nearly 800 times more
memory than the first version. However, its execution time
is only about 4 times longer in subsequential runs. If ploting
graphs is turned off, the execution time is only 2.5 times
greater. The execution speed is reduced by code optimiza-
tion, i.e., vectorization, prealocation, and parallelization.
This way, the final version was successfully optimized,
which is also confirmed by the column of the ratio of used
memory to the speed of execution of the algorithm that has
the highest data processing speed in the final version.

4. Conclusions
The aim of our research was to create a simulation algo-

rithm that will simulate a queue theory system in Matlab.
The aim was to create a model that will simulate the
M/M/n/∞ system. When creating the algorithm, we first
made a flowchart according to the algorithms from the lit-
erature. Then we have written the first version of the algo-
rithm according to the diagram. Next, the algorithm was
optimized for Matlab. While optimizing the algorithm, we
encountered errors in the algorithms from the literature that
caused incorrect outputs. We analysed the errors and sug-
gested some corrections. By analysing the available vectors,
we designed new outputs in the form of graphs showing
system changes over time.

The research output is an algorithm enabling simulation
of M / M / n / ∞ system. The algorithm provides the user
with both textual and graphical outputs. Using the created
algorithm, it is possible to perform simulations of real sys-
tems with N service lines and with infinite queue. Outputs
from the algorithm can be used in solving queuing theory
problems and research activities.

ACKNOWLEDGEMENTS
This article was published with the support of project

EUREKA-E! 11158 U Health Auto-ID technológie
a internet vecí na zvýšenie kvality zdravotníckych služieb.

This article was published with the support of project
VEGA 1/0721/18 Výskum ekonomických dopadov vi-
zuálneho smogu v doprave s využitím metód neurovedy.

REFERENCES
[1] R. Hušek, J. Lauber. Simulačné modely. Praha: SNTL/ALFA,

1987. 349s. ISBN 978-80-562-0075-9

[2] J. Smieško. Operačná analýza II. Základy teória hromadnej
obsluhy. MC Energy Žilina, 1999. 190 s. ISBN
80-968115-6-8

[3] What is Matlab?. [online]. [citované 26.05.2019]. Dostupné
na internete:
https://nl.mathworks.com/discovery/what-is-Matlab.html

[4] What Is a Live Script or Function?. [online]. [citované
26.05.2019[. Dostupné na internete:
https://nl.mathworks.com/help/Matlab/Matlab_prog/what-is-
a-live-script-or-function.html

[5] Achimský, K., Čorejová, T., Fitzová, M. Kajánek, B. Pro-
jektovanie sietí v pošte I. Vysoká škola dopravy a spojov
v Žiline. Edičné stredisko VŠDS, Žilina. 1995. 147s. ISBN
80-7100-238-0

[6] V. Achimská. Modelovanie systémov. Žilina: Žilinská uni-
verzita v Žiline, 2011. 96 s. ISBN 978-80-554-0450-9

[7] S. Ďutková. Využitie teórie hromadnej obsluhy na vybranej
poštovej prevádzkarni. Diplomová práca. Žilina. 2017. 82s.
EČ: 28330420172014

